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Abstract
Learning often happens in ideal conditions, but then must be applied in less-than-ideal conditions – such as when a learner 
studies clearly illustrated examples of rocks in a book but then must identify them in a muddy field. Here we examine whether 
the benefits of interleaving (vs. blocking) study schedules, as well as the use of feature descriptions, supports the transfer of 
category learning in new, impoverished contexts. Specifically, keeping the study conditions constant, we evaluated learn-
ers’ ability to classify new exemplars in the same neutral context versus in impoverished contexts in which certain stimulus 
features are occluded. Over two experiments, we demonstrate that performance in new, impoverished contexts during test is 
greater for participants who received an interleaved (vs. blocked) study schedule, both for novel and for studied exemplars. 
Additionally, we show that this benefit extends to both a short (3-min) or long (48-h) test delay. The presence of feature 
descriptions during learning had no impact on transfer. Together, these results extend the growing literature investigating 
how changes in context during category learning or test impacts performance and provide support for the use of interleaving 
to promote the far transfer of category knowledge to impoverished contexts.
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Introduction

Learning often occurs under pristine conditions, such as 
when a geologist-in-training studies an illustrated guide to 
rocks, a birder listens to labeled recordings of bird calls, 
or a student reviews stars and constellations in a diagram 
of the night sky. Clear and complete (often decontextual-
ized) examples are the norm in guidebooks and textbooks, 
as well as in many psychology experiments. Robust learn-
ing, however, must transfer to different, often less than 
ideal conditions. Oftentimes rocks are muddy, bird calls are 
intermingled with other sounds, and light pollution obscures 
the night sky. Here we examine whether strategies known 
to promote category learning also support transfer of that 

knowledge to the identification of new exemplars in impov-
erished contexts.

At the broadest level, transfer refers to learning that per-
sists despite differences at test, versus encoding, in the items 
– the content of what is learned – or conditions – the context 
of learning (see Barnett & Ceci, 2002; Taatgen, 2013). Close 
transfer involves similar items or conditions at study and 
test (e.g., identifying a new photo of a rock after studying 
guidebook photos) whereas far transfer involves very differ-
ent items or conditions between study and test. The category 
learning literature has typically defined transfer as people’s 
ability to classify new, non-studied exemplars (e.g., clas-
sifying new rock as granite), i.e., relatively close transfer.

A large literature has revealed many principles that pro-
mote this form of transfer. For example, people correctly 
classify more new exemplars following interleaved learning, 
where exemplars from different categories are intermixed, as 
opposed to blocked study, where exemplars from the same 
category are studied in sequence (for a recent review and 
meta-analysis, see Dunlosky et al., 2013; see also Brunmair 
& Richter, 2019; Kornell & Bjork, 2008; cf. Flesch et al., 
2018; Goldstone, 1996; Tauber et al., 2013). Furthermore, 
transfer is improved following distributed practice – the 
spreading of study opportunities over a greater period of 
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time – than temporally massed practice (for review, see Ben-
jamin & Tullis, 2010; Cepeda et al., 2006; Dunlosky et al., 
2013). Transfer also improves following study of exemplars 
labeled with items’ key diagnostic features, as compared to 
studying unlabeled exemplars (Miyatsu et al., 2019). Many 
of the principles that support transfer of categorical knowl-
edge are the same as ones that support memory. For exam-
ple, learning through attempted labeling (with feedback) is 
more effective than studying labeled exemplars (Levering 
& Kurtz, 2015), paralleling the large literature showing that 
retrieval practice is a more effective learning strategy than 
reading (Roediger & Butler, 2011).

Transfer of category learning in the real world, however, 
is rarely as forgiving as in a textbook – perceptual and cog-
nitive demands increase in cases of far transfer, where test 
exemplars and contexts differ greatly from learning. For 
example, naturally encountered pieces of granite differ in 
shape and size, can be broken or partially obscured, and 
appear different depending on lighting or environmental 
factors (mud, dirt, etc.). These perceptual obfuscations of 
stimuli features can indiscriminately affect both discrimina-
tive and characteristic features of stimuli, altering between-
category differences as well as within-category similarities 
(Carvalho & Goldstone, 2017). To date, a small, but grow-
ing, literature has examined how people learn to categorize 
when learning is less than ideal, examining the occlusion 
of study exemplars’ perceptual features (e.g., Hornsby & 

Love, 2014; Meagher et al., 2018; Taylor & Ross, 2009) or 
restricting the training range to typical cases (Hornsby & 
Love, 2014). But no studies have examined difficulties intro-
duced at test, which may or may not have similar effects as 
those observed during learning – the memory, for example, 
is more affected by divided attention at study than at test 
(Craik et al., 1996).

Here we focus on the potential benefits of interleaved 
study, as opposed to blocked study (see Dunlosky et al., 
2013). To examine transfer in impoverished contexts, we 
simulated a real-world impoverished context common in avi-
ation and maritime operations: night vision (Gauthier et al., 
2008; Johnson, 2004; Ruffner et al., 2001; Salazar et al., 
2003). We adapted rock stimuli (Miyatsu et al., 2019) to sim-
ulate their appearance via night goggles, partially occlud-
ing two diagnostic features: color and, to a lesser extent, 
granularity (see Fig. 1). Thus, this night goggle simulation 
affected both discriminative features (ones that differentiate 
between categories) and characteristic features (those shared 
within a category). For example, color is discriminative 
when identifying rocky gypsum (almost always white) and 
obsidian (almost always black), as those colors are relatively 
unique in the set of rocks used. In contrast, sandstone rocks 
are similarly colored to each other, but their color palette is 
also similar to that of many other rocks – making color char-
acteristic but not discriminative (see Carvalho & Goldstone, 
2017; Nosofsky et al., 2017).

Fig. 1  An example (a) of interleaved and blocked study sequence. 
The above example uses a reduced number of exemplars than actu-
ally used in Experiments 1 and 2 for visualization purposes. In (b) 

an example of the same rock exemplar in both a control and impover-
ished context. In (c) an example of the rocks when studied under the 
inclusion of feature descriptions condition
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Compared to blocked study, interleaving often leads to 
better learning (Dunlosky et al., 2013). This is especially 
true for highly overlapping categories (Carvalho & Gold-
stone, 2014) and more-to-difficult-to-learn categories (Zulki-
ply & Burt, 2013). Sequential Attention Theory (SAT) posits 
that such effects occur because interleaving directs attention 
to features that differentiate between categories (discrimina-
tive features), whereas blocked learning highlights shared 
features within a category (characteristic features; Carvalho 
& Goldstone, 2015; Carvalho & Goldstone, 2017). While 
task specific circumstances and variability influence the 
effectiveness of each study strategy, one prediction of SAT, 
however, is that a blocked study schedule may be a more 
effective learning strategy when the nature of the final test 
is unknown (Carvalho & Goldstone, 2015). This prediction 
arises as SAT posits that blocked sequences lead to more 
localized representations of categories absent inter-category 
context. Conversely, an interleaved sequence contextual-
izes category representations, promoting interconnected, 
between-category representations through the learning of 
discriminative features. Simply put, the larger learning con-
text exerts less influence on representations extracted during 
blocked learning than interleaved learning, predicting that 
leading blocked learning will yield representations that are 
more context flexible and more useful when test conditions 
are unknown during learning. Therefore, one prediction of 
prediction of SAT is that blocked learning will benefit far 
transfer to a testing environment that differs from the context 
during learning – here, where the perceptual obfuscations 
indiscriminately affect both discriminative and characteristic 
features (Carvalho & Goldstone, 2015).

Therefore, in two studies where learning occurred under 
ideal, unaltered conditions, we manipulated two strategies 
proposed to improve learning and transfer of rock classifica-
tion: interleaving (vs. blocked study) and, in an exploratory 
manipulation, feature descriptions, which described and 
circled rocks’ key features (Miyatsu et al., 2019). Here we 
aimed to replicate two findings (pre-registered): that under 
standard test conditions – i.e., control contexts – both mem-
ory for studied items and identification of novel rocks would 
be greater following interleaved vs. blocked practice (see 
Dunlosky et al., 2013). Further, we pre-registered two novel 
questions: Under impoverished contexts, will (1) memory 
for studied instances and (2) transfer to new exemplars be 
greater following interleaved versus blocked practice? As 
an exploratory question (pre-registered), we manipulated 
whether features were labeled during learning in order to 
investigate whether any of the above questions are modu-
lated by the use of feature descriptions during learning (see 
Miyatsu et al., 2019).

We investigated these questions in two experiments which 
differed only in the amount of time separating study and 
test. The test occurred almost immediately after study in 

Experiment 1, but was delayed 2 days in Experiment 2 as 
research on the relationship between study-test delay and 
the benefits of interleaving has produced mixed findings 
(for reviews, see Brunmair & Richter, 2019; Dunlosky et al., 
2013).

Experiment 1

Method

Participants and design Duke University’s internal review 
board approved both experiments. Both were preregistered 
on the Open Science Framework (https:// osf. io/ 3fmxj/1). We 
conducted an a priori power analysis using G*Power 3.1.9.2. 
(Faul et al., 2007) for 2 (between: interleaved vs. blocked) × 
2 (between: feature descriptions vs. no feature descriptions) 
ANOVAs with power set at .9, α = .05, and Cohen’s f = .20, 
which suggested a sample size of 265. Our targeted sample 
size was 280 participants, given that we expected some level 
of attrition and non-compliance.

In total, Experiment 1 included 280 participants recruited 
from Prolific in February/March 2020 (www. proli fic. co; 
Palan & Schitter, 2018). Participants were required to (1) 
currently reside in the USA or UK, (2) speak English as a 
first language, (3) have a 90% study approval rate, (4) have 
a minimum of 100 study submissions, and (5) complete the 
study using a desktop computer. Data for 31 participants 
were excluded from analysis due to failure to complete the 
full study (n = 5) or failure of one or both attention checks 
(n = 26). Thus, the final sample included 249 participants (M 
age = 38 years, SD = 13; 57% female; 87% White).

Materials Materials included images of rocks from Miyatsu 
et al. (2019) from 12 different rock categories (i.e., amphi-
bolite, breccia, conglomerate, gneiss, granite, obsidian, mar-
ble, pegmatite, pumice, rock gypsum, sandstone, and slate). 
Out of the 144 exemplars used in Miyatsu et al. (2019), we 
randomly selected 120 exemplars for the current research 
(ten exemplars per category). Across all participants, 72 of 
these exemplars were randomly selected to serve as study 
stimuli and the remaining 48 served as novel rocks on the 
final classification test.

At study, images were presented either with or with-
out highlighted feature descriptions, depending on group 

1 We also ran Experiment 1 on Amazon’s MTurk. However, 85 out 
of the 280 participants (30%) of the sample either (a) submitted poor-
quality data or (b) were identified as bots. In hindsight, we realized 
that our exclusion criteria may have not been strong enough given the 
increase in bots on Mturk and we are not confident in the reliability of 
this dataset. Therefore, we do not present these data here.
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assignment. Images with feature descriptions included the 
rock with key category features circled and notated, whereas 
images without feature descriptions did not (see Miyatsu 
et al., 2019, Exp. 2). At test, all images were presented 
without feature descriptions. Out of the 48 studied rocks, 
24 were randomly selected to be tested in the original con-
trol context and another unique set of 24 were tested in the 
impoverished context. Similarly, out of the 48 novel rocks 
(the transfer items), we randomly selected 24 to be tested 
in the original neutral context and 24 to be tested in the 
impoverished context. Rocks tested in the neutral context 
were presented in their original condition in full color (as in 
Miyatsu et al., 2019). For impoverished context test stimuli, 
we adapted images from Miyatsu et al. (2019) to appear as 
if they were being viewed under a night vision filter. This 
was done using the following procedure. First, each image 
was converted to a monochrome scale. Then the mixing of 
RGB source channels was altered to be 0%, 100%, and 0%, 
respectively, for each channel. Images where then altered 
along HSL color lines to have the values 75, 100, and -25, 
respectively, for each color property in HSL space. Finally, 
for each image, the black value in CMYK color space was 
altered to be 100%. This effectively simulated each rock 
under a night vision context. The use of a “night vision” 
filter therefore does not simply darken stimuli, but mimics 
the complex and multidimensional way lighting and other 
environmental features might influence the color of real-
world stimuli. For these adapted stimuli, please see https:// 
osf. io/ 3fmxj/.

Procedure After reserving a spot in the study on Prolific, 
participants were redirected to Gorilla (www. goril la. sc), 
an online experiment builder that presented all tasks and 
instructions (Anwyl-Irvine et al., 2020). Participants then 
completed the consent form and were asked to minimize 
distractions prior to beginning the experiment. Next, partici-
pants were told that they would be asked to learn 12 types of 
rocks and that the experiment would have two major phases 
(i.e., a learning phase and a testing phase).

During the learning phase, participants studied 6 differ-
ent exemplars of each rock category; they saw each example 
twice during the study phase, equating to 144 study trials 
in total. On each study phase trial, participants passively 
viewed a rock image presented with its category name for 
6 s (either with or without feature descriptions, depending 
on group assignment). Images were presented in either a 
blocked or interleaved study schedule, depending on group 
assignment. For each group, we created a fixed, randomized 
order for study presentation (see Fig. 1). In the blocked 
group, participants studied all six exemplars for a given cat-
egory back-to-back in the same order twice prior to moving 
onto the next category. In the interleaved group, participants 
studied one exemplar per category in six blocks of 12. Once 

all six blocks were presented, participants received the six 
blocks for a second round of study. At least three exemplars 
from different categories were presented prior to receiving 
a new instance from the same category.

In both groups, two pictures of unrelated objects (i.e., a 
stack of books and a fork) served as attention check trials. 
These trials were presented at the ends of blocks 4 and 11 of 
study (after trials 48 and 132; see Meade & Craig, 2012, for 
recommendations to use one attention check item per every 
50–100 trials in survey research). On each attention check 
trial, the image and its name were also presented for 6 s. 
Participants were then immediately prompted to type in the 
name of the object on the next screen prior to continuing the 
study. Participants were unaware that these attention check 
trials would occur. After completing the learning phase, par-
ticipants played Tetris for 3 min as a distractor task.

During the testing phase, participants took classifica-
tion tests that required them to classify each of a series of 
rocks by selecting from a list of 12 possibilities (presented 
alphabetically). Participants indicated their choice by click-
ing on it with the mouse cursor. Participants were asked to 
avoid outside sources and to simply try their best. Partici-
pants were not instructed that some rocks would be new and 
some would be those they previously studied. The test was 
self-paced.

The standard and impoverished context tests were coun-
terbalanced evenly within each group. For both tests, novel 
items were always tested prior to studied items, but each half 
of the tests was randomized anew for each participant. For 
the impoverished context test, participants were informed 
that each rock would be presented under a night vision filter 
during classification. After completing the final tests, par-
ticipants filled out a demographics questionnaire and were 
awarded $6.75 for their participation.

Analysis All primary analyses for both experiments were 
pre-registered at https:// osf. io/ 3fmxj/. Our pre-registered 
analysis plan stated that we would conduct four 2 × 2 
between-subjects ANOVAs (study schedule × feature 
descriptions) for each of the example classification item 
types (i.e., studied items in same context, studied items in 
different context, novel items in same context, novel items 
in different context). However, upon inspection of the data, 
we deviated from our pre-registered analysis plan in favor 
of a linear mixed-models approach.

Classification accuracy data from the testing phase were 
fit to five generalized mixed effects logit models using the 
lme4 packages in R (Bates et al., 2015). Each model had an 
identical crossed random-effects structure, with a random 
intercept for each subject, as well as each rock category 
type. The first, null model included only the random-effects 
structure.
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Our hypotheses focused on the effects of four fixed fac-
tors on categorization performance at test: Study Schedule 
(Interleaved vs. Blocked study schedule), Study Status of test 
items (Studied vs. Novel exemplars), Context (standard vs. 
Impoverished contexts), and Feature Descriptions (Present 
vs. Absent at study). We structured a set of four hierarchical 
generalized mixed effects models to determine the valid-
ity of including each of these fixed effects. We iteratively 
added each fixed factor to successive models in order to test 
whether their inclusion improved model fit, and indicating 
whether that factor provided significant explanatory power 
in characterizing categorization performance at test. The 
fixed-effects structure of these models can be summarized 
as: Null: Random effects only, Model 1: Study Schedule, 
Model 2: Study Schedule ×Study Status, Model 3: Study 
Schedule ×Study Status × Context, Model 4: Study Sched-
ule ×Study Status × Context + Feature Description. The fit 
of these mixed models was determined using the anova() 
command in R to calculate AIC scores and conduct a chi-
squared test of each model against its hierarchically subor-
dinate model (i.e., null vs. 1-factor model).

Results

Means and standard errors for all groups are presented in 
Table 1. These results are visualized in Fig. 2. After data 
were fit to each model, the model fit test indicated that Model 
3, in which the Study Schedule, Study Status, and Context 
factors were included as main effects and interactions was 
the best fitting model (∆AIC = 276.28; p < .0001; Table 2). 
The inclusion of the Feature Description factor in Model 
4 as a main effect did not significantly improve model fit 
(∆AIC = −1.79; p = .643; Table 2). As such, we concluded 
that the inclusion (or lack thereof) of Feature Descriptions 

during study did not impact subsequent memory or transfer 
performance, and no follow-up tests of interactions were 
considered. The results of Model 3 can be seen in Table 3.

To explicitly test our four pre-registered hypotheses, we 
performed follow-up contrasts of Model 3. We found that 
interleaved versus blocked study schedules led to greater 
classification accuracy in control contexts for studied items, 
as well as novel transfer items (Memory: β = –0.60, p < 
.0001; Transfer: β = –0.41, p = .0002). This confirmed our 
first two hypotheses, and replicated previous findings (see 
Dunlosky et al., 2013). Our latter two hypotheses focused 
on the benefits of interleaving for transfer and memory in 
impoverished contexts. Here, follow-up contrasts of Model 
3 demonstrated that interleaved versus blocked study sched-
ules led to greater classification accuracy in impoverished 
contexts for studied, memory items, as well as novel, transfer 
items (Memory: β = –0.55, p < .0001; Transfer: β = –0.31, 
p = .0051). These results demonstrate for the first time that 
an interleaved study schedule benefitted later categoriza-
tion in an impoverished context, for both studied and novel 
(transfer) rocks.

Experiment 2

Experiment 2 was designed to replicate findings from Exper-
iment 1 with one major change – the time between study 
and test was extended from 3 min to 48 h. Some effects 
in cognitive science depend upon the length of the delay 
between learning and testing. For instance, the benefits of 
retrieval practice (see Congleton & Rajaram, 2012; Karpicke 
& Roediger, 2007; Roediger & Karpicke, 2006) are nor-
mally observed on delayed tests (e.g., 2 days), whereas the 
effect disappears or even reverses in favor of rereading on 
relatively immediate tests (e.g., 3 min).Existing research 

Table 1  Means and standard errors for final test performance for 
Experiment 1 (3-min delay)

Note: Ns for each of the groups were as follows: Interleaved Feature 
Descriptions (60), Interleaved No Feature Descriptions (59), Blocked 
Feature Descriptions (65), Blocked No Feature Descriptions (65). 
Numbers listed are percentages. Standard errors are presented in 
parentheses

Study characteristics Test characteristics

Study schedule Feature 
descrip-
tions

Control context Impoverished 
context

Studied Novel Studied Novel

Interleaved Yes 68 (2) 59 (2) 57 (2) 52 (2)
Interleaved No 68 (2) 57 (2) 56 (2) 51 (2)
Blocked Yes 56 (2) 50 (2) 45 (2) 44 (2)
Blocked No 60 (2) 51 (2) 48 (2) 48 (2)

Fig. 2  Categorization accuracy (%) in Experiment 1, as a function of 
the between-participants study schedule, context (control vs. impov-
erished), and whether items were previously studied or novel. Error 
bars are standard error, and data points are individual participants
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evaluating the extent to which interleaving benefits depend 
on test delay is mixed (for reviews, see Brunmair & Rich-
ter, 2019; Dunlosky et al., 2013). A recent meta-analysis by 
Brunmair and Richter (2019) suggests that interleaving ben-
efits are not moderated by test delay or whether test items are 
studied or novel items. However, given that transfer across 
different contexts is vastly understudied, the extent to which 
this meta-analysis applies to the current research is unclear. 
Thus, we increased the delay between study and test to be 
approximately 48 h in Experiment 2 to evaluate the extent 
to which effects and/or effect sizes may change at longer 
delays.

Method

Participants and design As in Experiment 1, our targeted 
sample size was 265 participants. However, we again over-
sampled and recruited 276 participants from Prolific in May/
June 2020, given that we expected some level of attrition and 
non-compliance. Eligibility requirements were the same as 
Experiment 1. Data for 30 participants were excluded from 
analysis due to failure to complete the full study (n = 4) or 
failure of one or both attention checks (n = 32). Thus, the 
final sample included 240 participants (M age = 36 years, 
SD = 13; 69% female; 88% White).

Procedure The procedure for Experiment 2 was exactly the 
same as Experiment 1, except for one change. After partici-
pants completed study, they did not play Tetris. Instead, they 
were told that they were done for the day and would receive 
a reminder email in approximately 48 h to complete the sec-
ond part of the study (i.e., the testing phase). Upon comple-
tion of both sessions, participants were awarded $10.00 for 
their participation.

Analysis As in Experiment 1, we deviated from our pre-
registered analysis plan and fit the classification accuracy 
data during the testing phase to a set of generalized linear 
mixed logit models.

Results

Means and standard errors for all groups are presented 
in Table 4. These results are visualized in Fig. 3. After 
data were fit to each model, the model fit test indicated 
that Model 3, in which the Study Schedule, Study Sta-
tus, and Context factors were included as main effects and 
interactions was the best fitting model (∆AIC = 199; p < 
.001; Table 5). The inclusion of the Feature Description 
factor in Model 4 as a main effect did not significantly 

Table 2  Results of the model comparison for hierarchical models of classification accuracy in Experiment 1

df degrees of freedom

Parameters AIC logLik Chi-squared df p

Null 3 26325 -13160
×Study Schedule 4 26304.95 -13148 22.05 1 <.0001
×Study Status 6 26192.92 -13090 116.03 2 <.0001
× Context 10 25916.64 -12948 284.28 4 <.0001
+ Feature Description 11 25918.43 -12948 0.21 1 0.643

Table 3  Summary results of the Study Schedule × Study Status × 
Context model for Experiment 1

OR odds ratio, SE standard error
Bolded values indicate significance

OR SE z p

Intercept 0.511 0.353 1.45 0.148
Study Schedule 0.597 0.111 5.38 <0.001
Study Status -0.403 0.060 -6.77 <0.001
Context -0.642 0.060 -10.72 <0.001
Study Schedule × Study Status -0.190 0.087 -2.18 0.029
Study Schedule × Context -0.045 0.087 -0.52 0.603
Study Status × Context 0.379 0.085 4.49 <0.001
Study Schedule × Study Status × 

Context
-0.052 0.123 -0.42 0.672

Table 4  Means and standard errors for final test performance for 
Experiment 2 (2-day delay)

Note: Ns for each of the groups were as follows: Interleaved Feature 
Descriptions (61), Interleaved No Feature Descriptions (58), Blocked 
Feature Descriptions (60), Blocked No Feature Descriptions (61). 
Numbers listed are percentages. Standard errors are presented in 
parentheses

Study characteristics Test characteristics

Study schedule Feature 
descrip-
tions

Control context Impoverished 
context

Studied Novel Studied Novel

Interleaved Yes 66 (2) 55 (2) 54 (2) 52 (2)
Interleaved No 64 (3) 54 (2) 53 (2) 50 (2)
Blocked Yes 54 (2) 46 (2) 42 (2) 46 (2)
Blocked No 54 (3) 44 (2) 45 (3) 44 (2)
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improve model fit (∆AIC = -1; p = .639; Table 5). As 
such, we concluded that the inclusion (or lack thereof) of 
Feature Descriptions during study did not impact subse-
quent memory or transfer performance, and no follow-up 
tests of interactions were considered. The results of Model 
3 can be seen in Table 6.

We again explicitly tested our four hypotheses by con-
ducting follow-up contrasts of Model 3. Interleaved study 
again led to better classification performance than did 
blocked study, regardless of whether the test items were 
studied ones or novel, transfer items (Memory: β = –0.62, 
p < .0001; Transfer: β = –0.55, p < .0001). Further, inter-
leaved vs. blocked study schedules led to greater classifi-
cation accuracy in impoverished contexts, for both studied 
items as well as novel, transfer items (Memory: β = –0.56, p 
< .0001; Transfer: β = –0.35, p = .0046). Importantly, these 
results replicate and extend our findings from Experiment 1, 
indicating that the benefits of interleaved study lead to more 
accurate classification of studied and novel rocks tested in 
impoverished contexts, up to ~48 h after study.

General discussion

Across two experiments, we demonstrated far transfer: par-
ticipants successfully identified novel rocks in a simulated 
night vision environment that obscured rock color and gran-
ularity. Performance (Exp. 1: 50%; Exp. 2: 48%) was much 
higher than chance (8.33%). Critically, interleaving (vs. 
blocked study) led to better identification of novel, transfer 
items in this impoverished context. Interleaving also ben-
efited the identification of studied rocks in the impoverished 
context (Figs. 2 and 3, Tables 1 and 4). As expected, we rep-
licated previous work showing the benefits of interleaving in 
a typical test environment, where no features were obscured. 
All benefits of interleaving occurred both immediately and 
after a 2-day delay, congruent with a recent meta-analysis 
from Brunmair and Richter (2019) that suggested the ben-
efits from an interleaved study schedule are not dependent 
on the length of test delay. Unrelated to our pre-registered 
hypotheses, we also saw a consistent significant interaction 
between old/new (study) status and context. Typically, peo-
ple are much better at classifying studied items than novel 
transfer ones – a finding we observe under control contexts 

Fig. 3  Categorization accuracy (%) in Experiment 2, as a function of 
the between-participants study schedule, context (control vs. impov-
erished), and whether items were previously studied or novel. Error 
bars are standard error, and data points are individual participants

Table 5  Results of the model comparison for hierarchical models of classification accuracy in Experiment 2

df degrees of freedom
Bolded values indicated significance

Parameters AIC logLik Chi-squared df p

Null 3 25292 -12643
×Study Schedule 4 25272 -12632 21.45 1 <.0001
×Study Status 6 25194 -12591 81.94 2 <.0001
× Context 10 24995 -12487 207.59 4 <.0001
+ Feature Description 11 24996 -12487 0.22 1 0.639

Table 6  Summary results of the Study Schedule × Study Status × 
Context model for Experiment 2

OR odds ratio, SE standard error
Bolded values indicate significance

OR SE z p

Intercept 0.261 0.343 0.76 0.447
Study Schedule 0.615 0.122 5.04 <.001
Study Status -0.497 0.063 -7.95 <.001
Context -0.590 0.063 -9.41 <.001
Study Schedule × Study Status -0.064 0.089 -0.72 0.474
Study Schedule × Context -0.060 0.089 -0.68 0.500
Study Status × Context 0.576 0.089 6.50 <.001
Study Schedule × Study Status × 

Context
-0.146 0.125 -1.17 0.243
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at test. But, this benefit was reduced under impoverished 
contexts at test too; performance on studied and novel items 
was similar (Figs. 2 and 3, Tables 3 and 6).

In contrast, feature descriptions (or lack thereof) did 
not affect later transfer (Tables 1, 2, 3, 4, 5 and 6), a find-
ing inconsistent with Miyatsu et al. (2019, Experiments 2 
and 3). There, labeling features during learning improved 
performance on a standard transfer test 2 days later (where 
required participants to identify new exemplars, but in the 
same unobstructed context as studied items). In our work, 
feature descriptions had almost no effect on performance 
regardless of final test context or item type (studied vs. 
novel). To be very clear, this is not to say the present work 
finds evidence against the benefits of feature descriptions 
during study. Feature highlighting is thought to benefit 
category learning through the biasing of attention toward 
category-relevant features or via the promotion of learning 
qualitative difference in category representations (Miyatsu 
et al., 2019). The inclusion here of other study strategies 
(i.e., interleaving vs. blocked study schedules) is not neces-
sarily additive with the inclusion (or not) of feature descrip-
tions. Therefore, the benefits of feature descriptions during 
study may be rendered ineffective when paired with other 
study strategies.

To our knowledge, this is the first demonstration that 
interleaving (vs. blocked) study schedules lead to better 
categorization of novel exemplars in a new, impoverished 
contexts. This finding adds to a growing literature focused 
on how changes in perceptually available features between 
learning and test impacts performance (Hornsby & Love, 
2014; Meagher et al., 2018; Taylor & Ross, 2009). While 
previous literature has investigated the effects of manipulat-
ing available perceptual features during learning (see Mea-
gher et al., 2018), understanding how changes in the testing 
environment affect transfer (i.e., where perceptual features 
of stimuli are occluded) remains understudied (see Hornsby 
& Love, 2014).

These results are inconsistent with the prediction of the 
SAT on the ideal study strategy when test conditions are 
unknown. The SAT suggests that blocked learning is more 
advantageous under transfer conditions at test that differ 
from study conditions. The SAT posits that different learn-
ing strategies draw attention to different features of to-be-
learned exemplars, with consequences for later performance. 
Interleaving promotes the learning of differences between 
exemplars coming from different categories, while blocking 
promotes the learning of similarities between items of the 
same category (Dunlosky et al., 2013; Carvalho & Gold-
stone, 2017; Nosofsky, 2011). Given the benefits of inter-
leaving observed in both of our experiments, the learning 
of discriminative features appears to matter more when the 
goal is transfer in a situation in which discriminative and 
characteristic features are both occluded (see Carvalho & 

Goldstone, 2017, Figs. 2 and 3). This result is inconsistent 
with this prediction of SAT; instead, the creation of robust, 
inter-related networks of categorization via learning discrim-
inative features during interleaved study may be more resil-
ient to broad contextual changes, whereas locally segregated 
networks of characteristic within-category features promoted 
by blocked study might be less adaptable (Zulkiply & Burt, 
2013; see also Goldstone, 1996).

The current results could alternatively be explained 
via differences in the initial, baseline quality of learning. 
While we do not have a direct measure of initial learning 
(as subjects studied image-label pairs without making any 
responses), it is reasonable to assume learning was higher in 
the interleaved condition given past research. In both studies 
(Tables 3 and 6) interleaved study always led to better cat-
egorization performance, for both studied and novel items. 
However, the data observed in the impoverished condition 
do not perfectly mirror those in the control context (as might 
be expected if the amount of learning at the end of the learn-
ing phase was the main predictor of final test performance). 
Interleaving led to better performance in the impoverished 
condition, with the expected decline for new exemplars (as 
compared to studied rocks; Figs. 2 and 3). Importantly, this 
was not true for a blocked study schedule; performance 
between studied and novel items was quite similar, albeit 
low, in the impoverished context (Figs. 2 and 3). Perhaps 
a blocked study schedule can protect against a decline in 
categorization performance for novel items, in comparison 
to studied items; however, content is simply not learned as 
well overall as in an interleaved study context. Conversely, 
this difference could also be interpreted as a memory boost 
specifically for studied items learned under an interleaved 
schedule, as a result of the benefit of distributed practice on 
memory retention (for review, see Dunlosky et al., 2013). 
However, whether these effects are present under less pas-
sive study conditions remains to be studied (see Carvalho & 
Goldstone, 2015).

While previous literature has explored the far transfer of 
category learning for relational category structures (Patter-
son & Kurtz, 2020; see also Lowenstein, 2010), these studies 
often conceptualize far transfer as simply obscuring only 
characteristic features of stimuli, while leaving intact the 
diagnostic and relational features. Here, our conceptualiza-
tion of the contextual far transfer of category learning seeks 
to account for the perceptual conditions of new, real-world 
contexts which often indiscriminately obscure both char-
acteristic and diagnostic features of an item. A salient, but 
imperfect, analogy might be how the change in light during 
sunset can alter the visual color of the entire rockface of a 
mountain range, as opposed to changing a specific set of fea-
tures – i.e., altering all colors of a granite rockface instead of 
only the red specks in the granite. For example, the rockfaces 
of the Sandia Mountain range outside Albuquerque, New 
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Mexico change color in the evening light without regard 
to the construct of discriminative or characteristic features. 
Together, we propose that these results speak both to cur-
rent debates within the literature regarding the usefulness of 
blocked versus interleaved learning for complex real-world 
stimuli (for review, see Hughes & Thomas, 2021; see also 
Flesch et al., 2018), as well as more generally on the useful-
ness of discriminative versus characteristic features for the 
far transfer of category learning in impoverished, real-world 
contexts (see also Murphy, 1982; Murphy & Ross, 2005).

Conclusion

The current research demonstrated the benefits of interleav-
ing study schedules during learning on performance at test 
when the physical context differs from the learning context, 
both for studied and novel exemplars. Here, specifically, we 
replicated and extended the previous finding (pre-registered) 
that under control context conditions, memory and trans-
fer for studied instances is greater following interleaved vs. 
blocked practice (see Dunlosky et al., 2013), showing that 
this benefit also extended to new, impoverished contexts. 
While we also manipulated the use of feature descriptions 
during study, in order to investigate potential performance 
benefits at test, we found no effect of feature descriptions (or 
lack thereof) on performance at any level. The current work 
highlights the importance of manipulations at learning for 
the promotion of transfer of category learning at test – show-
ing that interleaving study schedules promotes better far 
transfer of category learning. Future work should continue 
to pursue investigations of the benefits of different learning 
strategies and manipulations to promote the far transfer of 
category learning.
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