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Abstract The most effective educational interventions often face significant barriers to
widespread implementation because they are highly specific, resource intense, and/or com-
prehensive. We argue for an alternative approach to improving education: leveraging technol-
ogy and cognitive science to develop interventions that generalize, scale, and can be easily
implemented within any curriculum. In a classroom experiment, we investigated whether three
simple, but powerful principles from cognitive science could be combined to improve learning.
Although implementation of these principles only required a few small changes to standard
practice in a college engineering course, it significantly increased student performance on
exams. Our findings highlight the potential for developing inexpensive, yet effective educa-
tional interventions that can be implemented worldwide.
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Introduction

Improving education is an immense and complex global challenge. Millions of students
worldwide face significant barriers to obtaining education, particularly those who come from
disadvantaged backgrounds (OECD 2012). Even with access to education, too many primary
and secondary students consistently score below grade-specific proficiency levels in math and
science on international assessments (e.g., Trends in International Mathematics and Science
Study, Program for International Student Assessment); furthermore, students who demonstrate
proficiency in science and mathematics often struggle to apply their knowledge (Mullis et al.
2012; OECD 2010). In the subset of students who reach higher education, there are also signs
of trouble: post-secondary graduates often lack the advanced understanding and skills needed
to compete in a modern knowledge-based economy (U.S. National Science Board 2012;
UNESCO 2011). With tuition growing faster than household incomes and school
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budgets facing severe cuts, we need to make educational interventions easier and
cheaper to apply.

In a concerted effort to address this crisis, educators and scientists from a variety of
disciplines have produced numerous highly effective interventions, ranging from new instruc-
tional methods to computer-based learning systems. However, there are significant barriers to
implementing these interventions across an entire education system, which diminishes their
potential impact. For example, many of these interventions involve a complete overhaul of
existing curricula and pedagogy (e.g., Michaelsen et al. 2002); require enormous investments
of time, money, and expertise (e.g., Murray 1999); target a highly specific set of knowledge
(e.g., Anderson et al. 1985); and/or necessitate considerable efforts on the behalf of
overworked educators (e.g., Armbruster et al. 1987; Kirschner et al. 2006).

Although there is certainly merit in interventions that are highly specific, resource-intense,
and comprehensive, we argue that a different approach may be more fruitful. The goal of our
approach is to develop interventions that generalize, scale, and can be easily implemented
within any curriculum while minimizing any loss in effectiveness. In accordance with the
National Education Technology Plan of the United States (U.S. Department of Education
2010), we believe that the key to developing such interventions is leveraging both rapidly
advancing technology and research from cognitive science (Bransford et al. 1999) to put robust
learning tools in the hands of educators and students. The integration of simple, yet powerful
principles of learning into advanced technologies creates the potential to apply effective
practices to education systems worldwide.

We report the results of a classroom experiment that demonstrates the promise of this
approach to improving education. Previous studies have achieved large positive effects on
learning by completely changing the curriculum and pedagogy (e.g., Deslauriers et al. 2011) or
using carefully controlled laboratory conditions and simple materials (e.g., Karpicke and
Roediger 2008). In contrast, our experiment investigated whether a few small, but important
changes to standard practice could make a big difference in a “noisy” and complicated
classroom setting. In making these changes, we deliberately combined multiple prin-
ciples of learning in order to increase the effectiveness of the intervention. We
examined whether this simple, but potentially powerful intervention would benefit
student learning in spite of a host of uncontrolled factors that should diminish its
effectiveness.

The experiment was carried out in the fall semester of 2012 in an upper-level class (“Signals
and Systems”) that is a core requirement for undergraduate electrical and computer engineer-
ing majors at Rice University. The course deals with signals, systems, and transforms, from
their theoretical mathematical foundations to practical implementation in circuits and computer
algorithms. Students attended 3 h of lecture per week and viewed texts, videos, and simula-
tions outside the classroom. Grading in the course was based on two exams (a midterm and
final), weekly homework assignments, a group project, and class participation. The interven-
tion targeted the weekly homework assignments and implemented three principles from
cognitive science that are robust, highly replicable, and generalizable: repeated retrieval
practice, spacing, and feedback (see Table 1). These principles have been shown to increase
long-term retention and promote transfer of learning by fostering deeper understanding. Based
on the wealth of evidence supporting their effectiveness, all three principles have been
recommended by the US Institute of Education Sciences (Pashler et al. 2007). In the basic
method used for the intervention, students were provided with repeated opportunities to
retrieve and use their knowledge through a schedule of spaced practice; they were also
required to view timely feedback in order to reinforce their knowledge and to correct their
errors. The main question of interest was whether these relatively minor changes would
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improve exam performance compared to standard practice, even though the changes only
affected the weekly homework assignments.

Methods
Participants

Forty Rice University undergraduate students participated in the experiment (four additional
students in the course chose not to release their data for research purposes). Each student who
participated received a $25 Amazon.com gift certificate.

Design and Counterbalancing

In order to minimize disruption to the way the class was normally taught, the intervention was
only implemented for the weekly homework assignments. The intervention was delivered
through the use of OpenStax Tutor (http://openstaxtutor.org), a new e-learning system de-
signed to implement cognitive science principles. We assessed the effectiveness of the
intervention by comparing it to standard practice, which mirrored the way homework assign-
ments were administered in previous semesters. In both cases, students worked the homework
problems, turned in solutions by the deadline, and then received feedback (see Fig. 1 for an
example of a typical problem used in the course). Learning under the intervention differed
from standard practice in four small, but important ways:

Table 1 Descriptions of three principles from cognitive science that increase long-term retention and promote
transfer of learning as well as how each principle was implemented in the intervention in contrast to standard practice

Principle  Description Intervention Standard practice

Repeated  Repeatedly retrieving Students solved three sets of Students solved only a single
retrieval information from memory problems on each topic set of problems for each
practice strengthens memory for that topic

information; it can also
improve understanding of that
information (Roediger and

Butler 2011)

Spacing Spacing or distributing practice  Practice on the three sets of After material was covered in
over time produces a better problems was distributed over  the course, it was not
long-term retention than 3 weeks revisited on the homework
massing practice (i.e., cram- assignments
ming) (Cepeda et al. 2006)

Feedback  Feedback provides learners with Feedback was accessible Feedback was accessible
information that enables them immediately after the 1 week after the
to correct errors and to assignment deadline; students assignment deadline;
improve understanding were required to view the students were not required
(Hattie and Timperley 2007). solution to each problem in to view it
Immediate feedback is often order to receive credit for
more effective in the completing the assignment
classroom (Kulik and Kulik
1988)
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1. Repeated Retrieval Practice. Under standard practice, students received one set of
problems related to the material covered in class during a given week (i.e., a single
opportunity to practice retrieving and using their knowledge). Under the intervention,
students received the same set of initial problems, plus another two sets of follow-up
problems (i.e., three opportunities to practice retrieving and using their knowledge).
Students were told that their performance on the extra follow-up problems would only
count towards their participation grade in the class.

2. Spacing. As in most college courses, standard practice meant that once material was
covered in class and on a corresponding homework assignment, it was not revisited until
the exam. In contrast, the three problem sets that students received in the intervention were
spaced out by giving the follow-up practice problems on the next two homework
assignments (e.g., problems on the material covered in week 1 were given on assignments
#1, #2, and #3).

3. Timely Feedback. Standard practice provided feedback 1 week after the deadline (i.c., a
common delay in education that allows time for teaching assistants to grade the assign-
ment). The intervention delivered feedback immediately after the assignment deadline.

4. Required Feedback Viewing. Standard practice meant that feedback viewing was optional,
as instructors generally have no control or knowledge of whether their students process the
feedback. However, the intervention required feedback viewing; students did not receive
credit for completing each assignment until they had viewed the feedback.

Overall, the intervention provided students with spaced opportunities to repeatedly practice
retrieving and using their knowledge while also encouraging them to fully process the
feedback.

The experiment utilized a single factor (intervention vs. standard practice), within-subjects
design. At the start of the semester, students were randomly assigned to one of two groups.
Both groups alternated across weeks between the intervention and standard practice, with the
only difference being that group 1 began with the intervention in week 1, whereas group 2
began with standard practice. Thus, in any given week, one half of the students were assigned
to the intervention, while the other half received standard practice. Table 2 provides a
schematic representation of how the experiment was implemented within the course on a
week-by-week basis. The use of a within-subjects experimental design alleviated any concerns
about individual differences in ability.

Materials

The class covered 11 topics (e.g., discrete Fourier transforms; see Table 2 for a partial list) for
which there was a corresponding homework assignment. Each topic contained approximately
five core concepts (e.g., circular convolution, delta sifting property, etc.), which were generally
taught over the course of a week. The topics were designed to be relatively independent of
each other in order to minimize the potential for learning from the intervention to affect
learning from standard practice (or vice versa), as students switched back and forth between
the two methods from week to week; however, as in any course, the topics were somewhat
related and built upon each other to a degree.

Three practice problems were created for each concept. Each practice problem was unique
and required the application of the concept to determine the solution (see Fig. 1). For a given
topic, each of the three problems related to a concept was assigned to one of three problem
sets. One problem set was always used as the initial problems for that topic, while the other
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Table 2 Schematic representation of how the experiment was implemented during the first half of the course.
The same pattern was continued during the second half of the course, which concluded with the final exam

Week Topic Topic Group 1 assignment Topic Group 2 assignment
code code
Initial problems Follow-up Initial problems Follow-up
(method) problems (method) problems
1 Signal basics A Topic A - A Topic A -
(intervention) (standard practice)
2 Time-domain analysis B Topic B Topic A B Topic B -
of continuous-time (standard practice) (intervention)
systems
3 Time-domain analysis C Topic C Topic A C Topic C Topic B
of discrete-time (intervention) (standard practice)
systems
4 Continuous-time D Topic D Topic C D Topic D Topic B
Fourier series (standard practice) (intervention)
5 Discrete Fourier E Topic E Topic C E Topic E Topic D
transform (intervention) (standard practice)
6 Fast Fourier transform F Topic F Topic E F Topic F Topic D
and orthonormal (standard practice) (intervention)
bases
7 Midterm exam Topics A, B, C, and D* Topics A, B, C, and D*

?Only the topics from the first 4 weeks were tested on the midterm exam

two problem sets were used to provide additional practice in subsequent weeks for the
intervention (i.e., the follow-up problems). The order of the problem sets was not
counterbalanced for ethical purposes; every student in the class received the same initial
problems because these problems were fully graded and counted toward the homework grade
in the class. The follow-up practice problems were graded pass/fail and only counted towards
the participation grade.

Another set of 34 problems was created for the midterm and final exams. Like the practice
problems, each exam problem was unique and required the application of a concept. Due to
time limitations, the exams did not contain a problem for every concept. However, every topic
was tested and received equal coverage on the exam (approximately three problems per topic).
Topics 1-4 were tested on the midterm exam, and topics 5—11 were tested on the final exam.

Procedure

At the beginning of the semester, a researcher visited the classroom and explained to students
that they would have the option of participating in a study. They were told that the long-term
goal of the research project was to create a personalized learning system for educators and
students. They were also told that the research team was conducting experiments to investigate
questions about how people learn and that their interactions with the OpenStax Tutor system
were of interest for research purposes. Students were not informed about the specifics of the
manipulation, counterbalancing (e.g., students receiving the intervention and standard practice
on different topics), or the hypotheses of the experiment in order to minimize demand
characteristics. When they first logged into the OpenStax Tutor system, they had the oppor-
tunity to consent electronically and could change their decision at any time up until the end of
the course.
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Problem

Consider an LTI system with impulse response
h[n] = 6[n] — é[n — 1].

Calculate H(e/®) , the DTFT of A[n] . Simplify it as much as you
can (in this case, so that there are no sums in the answer).

a) H(e/®) = 2e7®2 cos(w/2)

b) H(e®) = 26/ cos(w/2)

) H(e”) = e cos(% o — n/4)

d) H(e”) = e® cos(Z w + 7/4)

e) H(e®) = 2 cos(w/2)el-or+a)
0 H(e®) = 2 sin(w/2)el-o2+52)

g9) H(e®) =e™ cos(Z n)

h) H(ei®) = e sin(Z n)

Feedback

High-Level Explanation

Calculate the DTFT using the formula, factoring out an exponential to
simplify the expression.

Detailed Solution
o0
H®) = ). hln)e?™
N=—0eg
o0
= ) (8ln] - 8[n — 1])e7™"
N=—0a
= le 70 — 17!
=1—e¥®

= e-]aﬂ( e;aﬂ _ e—;aﬂ)

= 2j sin(w/2)e7**

= 2 sin(w/2)e/ @22
Fig. 1 A sample problem from the experiment, which involves computing a discrete-time Fourier transform. At
first, the problem was presented in OpenStax Tutor without any of the multiple-choice alternatives. After the

students worked the problem and entered a free-form response, they were presented with the alternatives and
selected a response. Finally, they received feedback in the form of a high-level explanation and a detailed solution
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In order to mitigate any novelty effects (Clark 1983), all students used the OpenStax Tutor
system to enter their solutions to the homework problems and to view feedback regardless of
whether the material was assigned to the intervention condition or standard practice. Each
assignment contained approximately 10-20 problems, including a set of initial problems on
the concepts covered that week and follow-up problems to provide additional retrieval practice
on material from previous weeks.

Answering each problem involved two steps: (1) entering a response in a free-form text box
and then (2) selecting the correct response from a set of multiple-choice alternatives, which
appeared after the free-form response was submitted. This two-step answering process was
designed to maximize the mnemonic benefit of retrieval practice while retaining the objective
and automated scoring of the multiple-choice format. For all homework assignments, students
were allowed to work the problems in groups (which is standard practice in the course), but
they were required to input their final answers individually as well as to view the feedback
individually. Feedback indicated the correct multiple-choice alternative and provided a solu-
tion to the problem.

Two take-home exams (a midterm and a final) were used to assess learning of the
material covered in the homework assignments. Both exams were administered through
the OpenStax Tutor system and consisted of new problems that required students to apply
their knowledge of the core concepts from the course. Students received 1 week to
complete each exam, and they entered their solutions to the problems using the same
two-step answering procedure as the homework assignments. The exams were closed
book, and students were required to work the problems individually under the Rice
University honor code. After the semester, the data from the fully graded initial problems,
the follow-up problems, and exams were analyzed for students who consented to release
their data for research purposes.

Results

The results of the experiment were clear; the combination of small, but important changes to a
small part of standard practice boosted student learning and retention in the course. Students
performed better on the exam problems about material learned via the intervention than they
did on problems about material learned through standard practice. Given that a two-step
answering process was used (free form followed by multiple choice), it was important to
confirm that the result held for both question formats. It did. The advantage in performance
was evident in both the free-form responses [60 vs. 53 %; #39)=2.28, p=0.03, d=0.34] as
well as the subsequent answers selected from among multiple-choice alternatives [76 vs. 69 %;
1(39)=2.98, p=0.01, d=0.34].

These differences in exam performance were not due to differences in learning that
occurred before the homework assignments or the inherent difficulty of the course material;
students correctly answered the majority of the initial set of homework problems, and
performance did not differ as a function of the intervention versus standard practice (90 vs.
90 %; t<1). Another possibility is that students interpreted the follow-up problems as signaling
that the intervention topics were the most important ones, leading them to focus more on these
topics when preparing for the exams. However, such targeted studying was unlikely, given that
students were told that all the topics would be covered on the exams and the practice problems
only counted toward students’ participation grades. Moreover, all topics received equal
coverage on the exams, and so presumably, any students adopting such a strategy would have
noted this fact after the midterm and changed their strategy. If that were the case, then one
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would expect the overall effect to be driven by differences in performance on the midterm
exam; however, when the midterm exam performance was excluded, there was still a
significant difference between the intervention and standard practice on the final exam [short
answer, 63 vs. 56 %, 1#(39)=2.05, p=0.047, d=0.36, and multiple choice, 72 vs. 67 %, #39)=
2.59, p=0.013, d=0.22]. Yet, another possibility is that retrieval-induced forgetting (Anderson
et al. 1994) played a role in producing the differences in exam performance. However, this
explanation is unlikely because several of the boundary conditions under which retrieval-
induced forgetting effects disappear are present in our study: relational processing of the
material during learning (e.g., Anderson and McCulloch 1999), the use of specific retrieval
cues on the criterial test (i.e., as opposed to category cues; e.g., Butler et al. 2001), and
retention intervals longer than 24 h (e.g., MacLeod and Macrae 2001).

Finally, as expected, the experimental manipulation influenced students’ feedback viewing
behavior. On average, they viewed feedback for each problem a significantly greater number
of times under the intervention relative to standard practice [2.1 vs. 1.3; #(39)=10.55, p=0.001,
d=0.97]. In addition, students completely failed to view feedback 30 % of the time when
standard practice was used, but only 4 % of the time under the intervention.

Discussion

Our small-to-medium effect size is impressive when considered within the broader context
(Hattie 2009). The experiment was conducted in the classroom, and no attempts were made to
control numerous factors that would be expected to reduce or eliminate any effect of the
intervention. In contrast with laboratory studies where the learning process is highly controlled
and the potential for outside learning is extremely low (e.g., Karpicke and Roediger 2008),
students who participated in the present experiment had a multitude of opportunities to learn
the material beyond the homework assignments that delivered the intervention (e.g., attending
lectures, reading texts, watching videos, using simulations, studying with classmates, etc.).
One approach to classroom research is to minimize the impact of such extra-experimental
learning by either exerting complete control over the curriculum and pedagogy or “roping off”
material so that students do not engage with it outside of the experimental aspect of the course.
We took the opposite approach by giving students unrestricted access to the materials and
allowing them to control their own learning (aside from the homework assignments). More-
over, it is important to note that the students were taking the course for credit, so they were
motivated to excel on the exams and likely prepared for them in many ways beyond the
homework assignments (e.g., attending review sessions, meeting with a teaching assistant, etc.).

The effect of our intervention in this noisy classroom environment is even more
impressive when compared to other educational interventions in terms of cost, generaliz-
ability, and the degree of disruption to standard practice. Our intervention was highly
cost-effective and could easily be applied to other courses in a host of disciplines. On
average, intelligent tutoring systems produce larger effects on learning (d=0.76) when
compared with no tutoring (VanLehn 2011); however, these interventions are enormously
expensive to develop in terms of money, time, and resources, and they target a highly
specific set of knowledge (e.g., algebra). The changes implemented in our intervention
caused a minimal disruption to the class and required only a modest amount of work by
the instructor. Nevertheless, our intervention produced a larger effect than the average for
interventions that completely overhaul curricula and/or pedagogy, such as comprehensive
teaching reforms (4=0.22) or instructional methods like problem-based learning (4=0.15)
(Hattie 2009).
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Our findings provide compelling evidence that combining the principles of repeated
retrieval practice, spacing, and feedback generalizes to higher-order learning. The material
covered in the Signals and Systems course is far more complex than the types of materials
commonly used in basic laboratory research, which are often fact-based and verbal in nature
(for discussion, see Dunlosky et al. 2013). Prior research in the classroom has demonstrated
the efficacy of these principles individually (e.g., Carpenter et al. 2009; McDaniel et al. 2011),
but these studies tend to use simple fact-based materials as well. Furthermore, the vast majority
of studies on these principles, both in the laboratory and the classroom, have focused on the
retention of knowledge (e.g., using the same or very similar questions during initial retrieval
practice and on the final test). In contrast, the present experiment showed that these principles
promote the acquisition of knowledge that transfers to different contexts as measured by the
ability to solve new application problems on the exams.

In summary, the combination of spaced retrieval practice and required feedback viewing
had a powerful effect on student learning of complex engineering material. Of course, the
principles from cognitive science could have been applied without the use of technology.
However, our belief is that advances in technology and ideas from machine learning have the
potential to exponentially increase the effectiveness and impact of these principles. Automa-
tion is an important benefit, but technology also can provide a personalized learning experi-
ence for a rapidly growing, diverse body of students who have different knowledge and
academic backgrounds. Through the use of data mining, algorithms, and experimentation,
technology can help us understand how best to implement these principles for individual
learners while also producing new discoveries about how people learn. Finally, technology
facilitates access. Even if an intervention has a small effect size, it can still have a substantial
impact if broadly implemented. For example, aspirin has a small effect on preventing heart
attacks and strokes when taken regularly, but its impact is large because it is cheap and widely
available. The synergy of cognitive science, machine learning, and technology has the
potential to produce inexpensive, but powerful learning tools that generalize, scale, and can
be easily implemented worldwide.
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